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Abstract. Forms of synchrony can greatly simplify modeling, design, and ver-
ification of distributed systems. Thus, recent advances in clock synchronization
protocols and their adoption hold promise for system design. However, these pro-
tocols synchronize the distributed clocks only within a certain tolerance, and there
are transient phases while synchronization is still being achieved. Abstractions
used for modeling and verification of such systems should accurately capture
these imperfections that cause the system to only be “almost synchronized.” In
this paper, we present approximate synchrony, a sound and tunable abstraction
for verification of almost-synchronous systems. We show how approximate syn-
chrony can be used for verification of both time synchronization protocols and
applications running on top of them. We provide an algorithmic approach for
constructing this abstraction for symmetric, almost-synchronous systems, a sub-
class of almost-synchronous systems. Moreover, we show how approximate syn-
chrony also provides a useful strategy to guide state-space exploration. We have
implemented approximate synchrony as a part of a model checker and used it to
verify models of the Best Master Clock (BMC) algorithm, the core component of
the IEEE 1588 precision time protocol, as well as the time-synchronized channel
hopping protocol that is part of the IEEE 802.15.4e standard.

1 Introduction

Forms of synchrony can greatly simplify modeling, design, and verification of dis-
tributed systems. Traditionally, a common sense of time is established using time-
synchronization (clock-synchronization) protocols or systems such as the global posi-
tioning system (GPS), network time protocol (NTP), and the IEEE 1588 [19] precision
time protocol (PTP). These protocols, however, synchronize the distributed clocks only
within a certain bound. In other words, at any time point, clocks of different nodes can
have differing values, but time synchronization ensures that those values are within a
specified offset of each other, i.e., they are almost synchronized.

Distributed protocols running on top of time-synchronized nodes are designed un-
der the assumption that while processes at different nodes make independent progress,
no process falls very far behind any other. Figure 1 provides examples of such real
world systems. For example, Google Spanner [8] is a distributed fault tolerant system
that provides consistency guarantees when run on top of nodes that are synchronized
using GPS and atomic clocks, wireless sensor networks [27,26] use time synchronized
channel hopping (TSCH) [1] as a standard for time synchronization of sensor nodes in
the network, and IEEE 1588 precision time protocol (PTP) [19] has been adopted in
industrial automation, scientific measurement [21], and telecommunication networks.



Correctness of these protocols depends on having some synchrony between different
processes or nodes.
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Fig. 1. Almost-synchronous systems comprise
an application protocol running on top of a time-
synchronization layer.

When modeling and verifying sys-
tems that are almost-synchronous it
is important to compose them using
the right concurrency model. One re-
quires a model that lies somewhere be-
tween completely synchronous (lock-
step progress) and completely asyn-
chronous (unbounded delay). Various
such concurrency models have been
proposed in the literature, including
quasi-synchrony [7,17] and bounded-
asynchrony [15]. However, we discuss in
Sec. 7, these models permit behaviors
that are typically disallowed in almost-
synchronous systems. Alternatively, one can use formalisms for hybrid or timed sys-
tems that explicitly model clocks (e.g., [3,2]), but the associated methods (e.g., [20,16])
tend to be less efficient for systems with a huge discrete state space, which is typical for
distributed software systems.

In this paper, we introduce symmetric, almost-synchronous (SAS) systems, a class
of distributed systems in which processes have symmetric timing behavior. In our ex-
perience, protocols at both the application layer and the time-synchronization layer can
be modeled as SAS systems. Additionally, we introduce the notion of approximate syn-
chrony (AS) as a concurrency model for almost-synchronous systems, which also en-
ables one to compute a sound discrete abstraction of a SAS system. Intuitively, a system
is approximately-synchronous if the number of steps taken by any two processes do not
differ by more than a specified bound, denoted ∆. The presence of the parameter ∆
makes approximate synchrony a tunable abstraction method. We demonstrate three
different uses of the approximate synchrony abstraction:
1. Verifying time-synchronized systems: Suppose that the system to be verified runs

on top of a layer that guarantees time synchronization throughout its execution. In
this case, we show that there is a sound value of ∆ which can be computed using a
closed form equation as described in Sec. 3.2.

2. Verifying systems with recurrent logical behavior: Suppose the system to be ver-
ified does not rely on time synchronization, but its traces contain recurrent logical
conditions — a set of global states that are visited repeatedly during the protocol’s
operation. We show that an iterative approach based on model checking can identify
such recurrent behavior and extract a value of∆ that can be used to compute a sound
discrete abstraction for model checking (see Sec. 4). Protocols verifiable with this
approach include some at the time-synchronization layer, such as IEEE 1588 [19].

3. Prioritizing state-space exploration: The approximate synchrony abstraction can
also be used as a search prioritization technique for model checking. We show in
Sec. 6 that in most cases it is more efficient to search behaviors for smaller value of
∆ (“more synchronous” behaviors) first for finding bugs.
We present two practical case studies: (i) a time-synchronized channel hopping

(TSCH) protocol that is part of the IEEE802.15.4e [1] standard, and (ii) the best mas-
ter clock (BMC) algorithm of the IEEE 1588 precision time protocol. The former is
system where the nodes are time-synchronized, while the latter is the case of a system



with recurrent logical behavior. Our results show that approximate synchrony can re-
duce the state space to be explored by orders of magnitude while modeling relevant
timing semantics of these protocols, allowing one to verify properties that cannot be
verified otherwise. Moreover, we were able to find a so-called “rogue frame” scenario
that the IEEE 1588 standards committee had long debated without resolution (see our
companion paper written for the IEEE 1588 community [6] for details).

Our abstraction technique can be used with any finite-state model checker. In this
paper we implement it on top of the ZING model checker [4], due to its ability to control
the model checker’s search using an external scheduler that enforces the approximate
synchrony condition.

To summarize, this paper makes the following contributions:
– The formalism of symmetric, almost synchronous (SAS) systems and its use in mod-

eling an important class of distributed systems (Sec. 2);
– A tunable abstraction technique, termed approximate synchrony (Sec. 2 and 3);
– Automatic procedures to derive values of ∆ for sound verification (Sec. 3 and 4);
– An implementation of approximate synchrony in an explicit-state model checker

(Sec. 5), and
– The use of approximate synchrony for verification and systematic testing of two real-

world protocols, the BMC algorithm (a key component of the IEEE 1588 standard),
and the time synchronized channel hopping protocol (Sec. 6).

2 Formal Model and Approach

In this section, we define clock synchronization precisely and formalize the notion of
symmetric almost-synchronous (SAS) systems, the class of distributed systems we are
concerned with in this paper.

2.1 Clocks and Synchronization

Each node in the distributed system has an associated (local) physical clock χ, which
takes a non-negative real value. For purposes of modeling and analysis, we will also
assume the presence of an ideal (global) reference clock, denoted t. The notation χ(t)
denotes the value of χ when the reference clock has value t. Given this notation, we
describe the following two basic concepts:
1. Clock Skew: The skew between two clocks χi and χj at time t (according to the

reference clock) is the difference in their values |χi(t)− χj(t)|.
2. Clock Drift: The drift in the rate of a clock χ is the difference per unit time of the

value of χ from the ideal reference clock t.
Time synchronization ensures that the skew between any two physical clocks in the
network is bounded. The formal definition is as below.

Definition 1. A distributed system is time-synchronized (or clock-synchronized) if there
exists a parameter β such that for every pair of nodes i and j and for any t,

|χi(t)− χj(t)| ≤ β (1)

For ease of exposition, we will not explicitly model the details of dynamics of physical
clocks or the updates to them. We will instead abstract the clock dynamics as compris-
ing arbitrary updates to χi variables subject to additional constraints on them such as
Eqn. 1 (wherever such assumptions are imposed).



Example 1. The IEEE 1588 precision time protocol [19] can be implemented so as to
bound the physical clock skew to the order of sub-nanoseconds [21], and the typical
clock drift to at most 10−4 [19].

2.2 Symmetric, Almost-Synchronous Systems

We model the distributed system as a collection of processes, where processes are used
to model both the behavior of nodes as well as of communication channels. There can
be one or more processes executing at a node.

Formally, the system is modeled as the tupleMC = (S, δ, I, ID,χ, τ ) where
- S is the set of discrete states of the system,
- δ ⊆ S × S is the transition relation for the system,
- I ⊆ S is the set of initial states,
- ID = {1, 2, . . . ,K} is the set of process identifiers,
- χ = (χ1, χ2, . . . , χK) is a vector of local clocks, and
- τ = (τ1, τ2, . . . , τK) is a vector of process timetables. The timetable of the ith pro-

cess, τi, is an infinite vector (τ1i , τ
2
i , τ

3
i , . . .) specifying the time instants according

to local clock χi when process i executes (steps). In other words, process i makes its
jth step when χi = τ ji .

For convenience, we will denote the ith process byPi. Since in practice the dynamics of
physical clocks can be fairly intricate, we choose not to model these details — instead,
we assume that the value of a physical clock χi can vary arbitarily subject to additional
constraints (e.g., Eqn. 1).

The kth nominal step size of processPi is the intended interval between the (k−1)th
and kth steps of Pi, viz., τki − τ

k−1
i . The actual step size of the process is the actual

time elapsed between the (k − 1)th and kth step, according to the ideal reference clock
t. In general, the latter differs from the former due to clock drift, scheduling jitter, etc.

Motivated by our case studies with the IEEE 1588 and 802.15.4e standards, we
impose two restrictions on the class of systems considered in this paper:
1. Common Timetable: For any two processes Pi and Pj , τi = τj . Note that this does

not mean that the process step synchronously, since their local clocks may report
different values at the same time t. However, if the system is time synchronized,
then the processes step “almost synchronously.”

2. Bounded Process Step Size: For any process Pi, its actual step size lies in an interval
[σl, σu]. This interval is the same for all processes. This restriction arises in practice
from the bounded drift of physical clocks.

A set of processes obeying the above restrictions is termed a symmetric, almost-synchronous
(SAS) system. The adjective “symmetric” refers only to the timing behavior — note
that the logical behavior of different processes can be very different. Note also that
SAS systems may or may not be running on top of a time synchronization layer, i.e.,
SAS systems and time-synchronized systems are orthogonal concepts.

Example 2. The IEEE 1588 protocol can be modeled as a SAS system. All processes in-
tend to step at regular intervals called the announce time interval. The specification [19]
states the nominal step size for all processess as 1 second; thus the timetable is the se-
quence (0, 1, 2, 3, . . .). However, due to the drift of clocks and other non-idealities such
as jitter due to OS scheduling, the step size in typical IEEE 1588 implementations can



vary by ±10−3. From this, the actual step size of processes can be derived to lie in the
interval [0.999, 1.001].

Traces and Segments. A timed trace (or simply trace) of the SAS system MC is a
timestamped record of the execution of the system according to the global (ideal) time
reference t. Formally, a timed trace is a sequence h0, h1, h2, . . . where each element
hj is a triple (sj ,χj , tj) where sj ∈ S is a discrete (global) state at time t = tj and
χj = (χ1,j , χ2,j , . . . , χK,j) is the vector of clock values at time tj . For all j, at least one
process makes a step at time tj , so there exists at least one i and a corresponding mi ∈
{0, 1, 2, . . .} such that χi,j(tj) = τmi

i . Moreover, processes step according to their
timetables; thus, if any Pi makes its mith and lith steps at times tj and tk respectively,
for mi < li, then χi,j(tj) = τmi

i < τ lii = χi,k(tk). Also, by the bounded process
step size restriction, if any Pi makes its mith and mi + 1th steps at times tj and tk
respectively (for all mi), |tk − tj | ∈ [σl, σu]. Finally, s0 ∈ I and δ(sj , sj+1) holds for
all j ≥ 0 with the transition into sj occuring at time t = tj .
A trace segment is a (contiguous) subsequence hj , hj+1, . . . , hl of a trace ofMC .

2.3 Verification Problem and Approach

The central problem considered in this paper is as follows:

Problem 1. Given an SAS systemMC modeled as above, and a linear temporal logic
(LTL) property Φwith propositions over the discrete states ofMC , verify whetherMC

satisfies Φ.

One way to modelMC would be as a hybrid system (due to the continuous dynam-
ics of physical clocks), but this approach does not scale well due to the extremely large
discrete state space. Instead, we provide a sound discrete abstractionMA ofMC that
preserves the relevant timing semantics of the ‘almost-synchronous’ systems. (Sound-
ness is formalized in Sec. 3).
There are two phases in our approach:
1. Compute Abstraction Parameter: Using parameters of MC (relating to clock dy-

namics), we compute a parameter ∆ characterizing the “approximate synchrony”
condition, and use ∆ to generate a sound abstract modelMA.

2. Model Checking: We verify the temporal logic property Φ on the abstract model
using finite-state model checking.

The key to this strategy is the first step, which is the focus of the following sections.

3 Approximate Synchrony

We now formalize the concept of approximate synchrony (AS) and explain how it can
be used to generate a discrete abstraction of almost-synchronous distributed systems.
Approximate synchrony applies to both (segments of) traces and to systems.

Definition 2. (Approximate Synchrony for Traces) A trace (segment) of a SAS system
MC is said to satisfy approximate synchrony (is approximately-synchronous) with pa-
rameter ∆ if, for any two processes Pi and Pj inMC , the number of steps Ni and Nj
taken by the two processes in that trace (segment) satisfies the following condition:

|Ni −Nj | ≤ ∆



Although this definition is in terms of traces of SAS systems, we believe the notion of
approximate synchrony is more generally applicable to other distributed systems also.
An early version of this definition appeared in [10].
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Fig. 2. AS(∆) vi-
olated for ∆ = 2

The definition extends to a SAS system in the standard way:

Definition 3. (Approximate Synchrony for Systems) A SAS sys-
tem MC satisfies approximate synchrony (is approximately-
synchronous) with parameter ∆ if all traces of that system satisfy
approximate synchrony with parameter ∆.

We refer to the condition in Definition 3 above as the approxi-
mate synchrony (AS) condition with parameter ∆, denoted AS(∆).
For example, in Fig. 2, executing step 5 of process P1 before step
3 of process P2 violates the approximate synchrony condition for
∆ = 2. Note that ∆ quantifies the “approximation” in approxi-
mate synchrony. For example, for a (perfectly) synchronous system
∆ = 0, since processes step at the same time instants. For a fully
asynchronous system, ∆ =∞, since one process can get arbitrarily
ahead of another.

3.1 Discrete Approximate Synchrony Abstraction

We now present a discrete abstraction of a SAS system. The key modification is to (i)
remove the physical clocks and timetables, and (ii) include instead an explicit sched-
uler that constrains execution of processes so as to satisfy the approximate synchrony
condition AS(∆).

Formally, given a SAS systemMC = (S, δ, I, ID,χ, τ ), we construct an∆-abstract
model MA as the tuple (S, δa, I, ID, ρ∆) where ρ∆ is a scheduler process that per-
forms an asynchronous composition of the processes P1,P2, . . . ,PK while enforcing
AS(∆). Conceptually, the scheduler ρ∆ maintains state counts Ni of the numbers of
steps taken by each process P̂i from the initial state.4 A configuration ofMA is a pair
(s,N) where s ∈ S and N ∈ ZK is the vector of step counts of the processes. The
abstract model MA changes its configuration according to its transition function δa
where δa((s,N), (s′, N ′)) iff (i) δ(s, s′) and (ii)N ′i = Ni+1 if ρ∆ permits Pi to make
a step and N ′i = Ni otherwise.

In an initial state, all processes Pi are enabled to make a step. At each step of δa,
ρ∆ enforces the approximate synchrony condition by only enabling Pi to step iff that
step does not violate AS(∆). Behaviors ofMA are untimed traces, i.e., sequences of
discrete (global) states s0, s1, s2, . . . where sj ∈ S , s0 is an initial (global) state, and
each transition from sj to sj+1 is consistent with δa defined above.

Note that approximate synchrony is a tunable timing abstraction. Larger the value
of ∆, more conservative the abstraction. The key question is: for a given system, what
value of ∆ constitutes a sound timing abstraction, and how do we automatically com-
pute it? Recall that one model is a sound abstraction of another if and only if every
execution trace of the latter (concrete model MC) is also an execution trace of the
former (abstract modelMA). In our setting, the ∆-abstract and concrete models both

4 The inclusion of step counts may seem to make the model infinite-state. We will show in Sec. 5
how the model checker can be implemented without explicitly including the step counts in the
state space.



capture the protocol logic in an identical manner, and differ only in their timing se-
mantics. The concrete model explicitly models the physical clocks of each process as
real-valued variables as described in Sec. 2. The executions of this model can be rep-
resented as timed traces (sequences of timestamped states). On the other hand, in the
∆-abstract model, processes are interleaved asynchronously while respecting the ap-
proximate synchrony condition stated in Definition 3. An execution of the ∆-abstract
model is an untimed trace (sequences of states). We equate timed and untimed traces
using the “untiming” transformation proposed by Alur and Dill [3] — i.e., the traces
must be identical with respect to the discrete states.

3.2 Computing ∆ for Time-Synchronized Systems

We now address the question of computing a value of ∆ such that the resultingMA is
a sound abstraction of the original SAS systemMC . We consider here the case when
MC is a system running on a layer that guarantees time synchronization (Eqn. 1) from
the initial state. A second case, when nodes are not time-synchronized and approximate
synchrony only holds for segments of the traces of a system, is handled in Sec. 4.

Consider a SAS system in which the physical clocks are always synchronized to
within β, i.e., Equation 1 holds for all time t and β is a tight bound computed based
on the system configuration. Intuitively, if β > 0, then ∆ ≥ 1 since two processes
are not guaranteed to step at the same time instants, and so the number of steps of two
processes can be off by at least one. The main result of this section is that SAS systems
that are time-synchronized are also approximately-synchronous, and the value of ∆ is
given by the following theorem.

Theorem 1. Any SAS systemMC satisfying Equation 1 is approximately-synchronous
with parameter ∆ =

⌈
β
σl

⌉
. (Proof in 10.2)

Suppose the abstract modelMA is constructed as described in Sec. 3.1 with∆ as given
in Theorem 1 and σl is the lower bound of the step size defined in Sec. 2.2. Then as a
corollary, we can conclude thatMA is a sound abstraction ofMC : every trace ofMC

satisfies AS(∆) and hence is a trace ofMA after untiming.

Example 3. The Time-Synchronized Channel Hopping (TSCH) [1] protocol is being
adopted as a part of the low power Medium Access Control standard IEEE802.15.4e. It
can be modeled as a SAS system since it has a time-slotted architecture where processes
share the same timetable for making steps. The TSCH protocol has two components:
one that operates at the application layer, and one that provides time synchronization,
with the former relying upon the latter. We verify the application layer of TSCH that
assumes that nodes in the system are always time-synchronized within a bound called
the “guard time” which corresponds to β. Moreover, in practice, β is much smaller than
σl and thus ∆ is typically 1 for implementations of the TSCH.

4 Systems with Recurrent Logical Conditions

We now consider the case of a SAS system that does not execute on top of a layer that
guarantees time synchronization (i.e., Eqn. 1 may not hold). We identify behavior of
certain SAS systems, called recurrent logical conditions, that can be exploited for ab-
straction and verification. Specifically, even though AS(∆) may not hold for the system
for any finite ∆, it may still hold for segments of every trace of the system.



Definition 4. (Recurrent Logical Condition) For a SAS systemMC , a recurrent logical
condition is a predicate logicConv on the state ofMC such thatMC satisfies the LTL
property G F logicConv.

Our verification approach is based on finding a finite ∆ such that, for every trace of
MC , segments of the trace between states satisfying logicConv satisfy AS(∆). This
property of system traces can then be exploited for efficient model checking.

We begin with an example of a recurrent logical condition case in the context of
the IEEE 1588 protocol (Sec. 4.1). We then present our verification approach based on
inferring ∆ for trace segments via iterative use of model checking (Sec. 4.2).

4.1 Example: IEEE 1588 protocol

The IEEE 1588 standard [19], also known as the precision time protocol (PTP), enables
precise synchronization of clocks over a network. The protocol consists of two parts: the
best master clock (BMC) algorithm and a time synchronization phase. The BMC algo-
rithm is a distributed algorithm whose purpose is two-fold: (i) to elect a unique grand-
master clock that is the best clock in the network, and (ii) to find a unique spanning tree
in the network with the grandmaster clock at the root of the tree. The combination of a
grandmaster clock and a spanning tree constitutes the global stable configuration known
as logical convergence that corresponds to the recurrent logical condition. The second
phase, the time synchronization phase, uses this stable configuration to synchronize or
correct the physical clocks (more details in [19]).

Failure, causing re-
configuration

BMCA running

Logical Convergence

Physical 
Synchronization

Recurrent logical condition

Maximum Difference in 
Number of Steps of Processes = 

Fig. 3. Phases of the IEEE 1588 time-synchronization protocol

Figure 3 gives an overview of the phases of the IEEE 1588 protocol execution.
The distributed system starts executing the first phase (e.g., the BMC algorithm) from
an initial configuration. Initially, the clocks are not guaranteed to be synchronized to
within a bound β. However, once logical convergence occurs, the clocks are synchro-
nized shortly thereafter. Once the clocks have been synchronized, it is possible for a
failure at a node or link to break clock synchronization. The BMC algorithm operates
continually, with the goal of ensuring that, if time synchronization is broken, the clocks
will be re-synchronized. Thus, a typical 1588 protocol execution is structured as a (po-
tentially infinite) repetition of the two phases: logical convergence, followed by clock
synchronization. We exploit this recurrent structure to show in Sec. 4.2 that we can
compute a value of ∆ obeyed by segments of any trace of the system. The approach
operates by iterative model checking of a specially-crafted temporal logic formula.

Note that the time taken by the protocol to logically converge depends on various
factors including network topology and clock drift. In Sec. 6, we demonstrate empiri-



cally that the value of ∆ depends on the number of steps (length of the segment) taken
by BMCA to converge which in turn depends on factors mentioned above.

4.2 Iterative Algorithm to Compute ∆-Abstraction for Verification

Given a SAS systemMC whose traces have a recurrent structure, and an LTL property
Φ, we present the following approach to verify whetherMC satisfies Φ:
1. Define recurrent condition: Guess a recurrent logical condition, logicConv, on the

global state ofMC .
2. Compute Nmin: Guess an initial value of ∆, and compute, from parameters σl, σu

of the processes inMC , a number Nmin such that the AS(∆) condition is satisfied
on all trace segments where no process makes Nmin or more steps. We describe the
computation of Nmin in more detail below.

3. Verify if ∆ is sound: Verify using model checking onMA that, every trace segment
that starts in an initial state or a state satisfying logicConv and ends in another state
in logicConv satisfies AS(∆). This is done by checking that no process makesNmin

or more steps in any such segment. Note that verifyingMA in place ofMC is sound
as AS(∆) is obeyed for up to Nmin steps from any state. Further details, including
the LTL property checked, are provided below.

4. VerifyMC using ∆: If the verification in the preceding step succeeds, then a model
checker can verify Φ on a discrete abstraction M̂A ofMC , which, similar toMA, is
obtained by dropping physical clocks and timetables, and enforcing the AS(∆) con-
dition to segments between visits to logicConv. Formally, M̂A = (S, δ̂a, I, ID, ρ∆)

where δ̂a differs from δa only in that for a configuration (s,N), N ′i = 0 for all i if
s′ ∈ logicConv (otherwise it is identical to δa).
However, if the verification in Step 3 fails, we go back to Step 2 and increment ∆
and repeat the process to compute a sound value of ∆.

Pick a value of 

Compute 

Verify Eventual Logical Convergence (Property eq. 2)

Verify that achieves 
logical convergence in less 
than steps (under 

Found sound Verify 
using 

Increment 

Failed Success

Repeat the process to 
compute sound value of 

Consider a recurrent condition for the system.

Fig. 4. Iterative algorithm for computing ∆ exploiting logical convergence

Figure 4 depicts this iterative approach for the specific case of the BMC algorithm. We
now elaborate on Steps 2 and 3 of the approach.
Step 2: Computing Nmin for a given ∆. Recall from Sec. 2.2 that the actual step size
of a process lies in the interval [σl, σu]. LetPf be the fastest process (the one that makes
the most steps from the initial state) and Ps be the slowest (the fewest steps). Denote
the corresponding number of steps by Nf and Ns respectively. Then the approximate



synchrony condition in Definition 3 is always satisfied ifNf−Ns ≤ ∆. We wish to find
the smallest number of steps taken by the fastest process when AS(∆) is violated. We
denote this value as Nmin, and obtain it by formulating and solving a linear program.

Suppose first that Ps and Pf begin stepping at the same time t. Then, since the time
between steps of Pf is at least σl and that between steps of Ps is at most σu, the total
elapsed must be at least σlNf and at most σuNs, yielding the inequality σlNf ≤ σuNs.

However, processes need not begin making steps simultaneously. Since each process
must make its first step at least σu seconds into its execution, the maximum initial offset
between processes is σu. The smallest value of Nf occurs when the fast process starts
σu time units after the slowest one, yielding the inequality:

σlNf + σu ≤ σuNs

Given the above analysis, we can set up the following integer linear program (ILP)
to solve for Nmin:

min Nf s.t.

Nf ≥ Ns, Nf −Ns > ∆, σlNf + σu ≤ σuNs, Nf , Ns ≥ 1

Nmin is the optimal value of this ILP. In effect, it gives the fewest steps any process
can take (smallest Nf ) to violate the approximate synchrony condition AS(∆).

Example 4. For the IEEE 1588 protocol, as described in Sec. 2.2, the actual process step
sizes lie in [0.999, 1.001]. Setting ∆ = 1, solving the above ILP yields Nmin = 1502.

Step 3: Temporal Logic Property. Once Nmin is computed, we verify on the discrete
abstractionMA whether, from any state satisfying I ∨ logicConv, the model reaches
a state satisfying logicConv in less than Nmin steps. This also verifies that all traces in
the BMC algorithm satisfy the recurrent logicConv property and the segments between
logicConv satisfy AS(∆). We perform this by invoking a model checker to verify the
following LTL property, which references the variables Ni recording the number of
steps of process Pi:

(I ∨ logicConv) =⇒ F
[
logicConv ∧

(∧
i

(0 < Ni < Nmin)
)]

(2)

We show in Sec. 5 how to implement the above check without explicitly including the
Ni variables in the system state. Note that it suffices to verify the above property on
the discrete abstraction MA constrained by the scheduler ρ∆ because we explore no
more than Nmin steps of any process and so MA is a sound abstraction. The overall
soundness result is formalized below.

Theorem 2. If the abstract modelMA satisfies Property 2, then all traces of the con-
crete modelMC are traces of the model M̂A (after untiming) (Proof in 10.2)

In Sec. 6, we report on our experiments verifying properties of the BMC algorithm by
model checking the discrete abstract model M̂A as described above.



5 Model Checking with Approximate Synchrony

We implemented approximate synchrony within ZING [4], an explicit state model checker.
ZING performs a “constrained” asynchronous composition of processes, using an ex-
ternal scheduler to guide the interleaving. Approximate synchrony is enforced by an
external scheduler that explores only those traces satisfying AS(∆) by scheduling, in
each state, only those processes whose steps will not violate AS(∆).

Section 4 described an iterative approach to verify whether a ∆-abstract model of
a protocol is sound. The soundness proof depends on verifying Property 2. A naı̈ve
approach for checking this property would be to include a local variable Ni in each
process as part of the process state to keep track of the number of steps executed by
each process, causing state space explosion. Instead, we store the Ni information cor-
responding to each process external to the system state, as a part of the model checker
explorer.

var StateTable : Dictionary〈State, List〈int〉〉;

BoundedDFS(s : State) {
var i : int, s′ : State, steps′ : List〈int〉;
i := 0;
while (i <NoOfProcesses(s)){

steps′ :=IncElement(i, StateTable[s]);
if ¬ CheckASCond(steps′)
∨ steps′[i] > (Nmin +∆)
∨ s |= logicConv then
continue ;

s′ :=NextState(s, i);
if steps′[i] = Nmin then

assert(s′ |= logicConv);
if s′ /∈ Domain(StateTable)
∨¬(steps′ ≥pt StateTable[s

′]) then
StateTable[s′] := steps′;
BoundedDFS(s′);

i := i+ 1; } }

Verify() {
StateTable[sinitial ] = newList〈int〉;
BoundedDFS(sinitial );

}

Fig. 5. Algorithm for Verification of Property 2

The algorithm in Fig. 5 performs
systematic bounded depth first search
(DFS) exploration. To check whether
all traces of length Nmin satisfy even-
tual logical convergence under AS(∆)
constraint, we enforce two bounds:
first, the final depth bound is (Nmin +
∆) and second, in each state a process
is enabled only if executing that process
does not violate AS(∆). If a state satis-
fies logicConv then we terminate the
search along that path.

The BoundedDFS function is called
recursively on each successor state and
it explore only those traces that sat-
isfy AS(∆). If the steps executed by
a process is Nmin then the logicConv
monitor is invoked to assert if s′ |=
logicConv (i.e. we have reached logi-
cal convergence state) and if the asser-
tion fails we increment the value of ∆
as described in Sec. 4.2. Nmin and ∆
values are derived as explained in Sec. 4.2. StateTable is a map from reachable state
to the tuple of steps with which it was last explored. steps′ is the vector of number of
steps executed by each process and is stored as a list of integers. IncElement(i, t) incre-
ments the ith element of tuple t and returns the updated tuple. CheckASCond(steps′)
checks the following condition that ∀s1, s2 ∈ steps′ |s1 − s2| ≤ ∆.

As an optimization, to avoid re-exploring a state which may not lead to new states,
we do not re-explore a state if it is revisited with steps′ greater than what it was last
visited with. The operator ≥pt does a pointwise comparison of the integer tuples. We
show in the following section that we are able to obtain significant state space reduction
using this implementation.



6 Evaluation

In this section, we present our empirical evaluation of the approximate synchrony ab-
straction, guided by the following goals:
• Verify two real-world standards protocols: (1) the best master clock algorithm in

IEEE 1588 and (2) the time synchronized channel hopping protocol in IEEE 802.15.4e.
• Evaluate if we can verify properties that cannot be verified with full asynchrony

(either by reducing state space or by capturing relevant timing constraints)
• Evaluate approximate synchrony as an iterative bounding technique for finding bugs

efficiently in almost-synchronous systems.

6.1 Modeling and Experimental Setup

We model the system in P [11], a domain-specific language for writing event-driven
protocols. A protocol model in P is a collection of state machines interacting with each
other via asynchronous events or messages. The P compiler generates a model for sys-
tematic exploration by ZING [4]. P also provides ways of writing LTL properties as
monitors that are synchronously composed with the model. Both the case studies, the
BMC algorithm and the TSCH protocol, are modeled using P. Each node in the protocol
is modeled as a separate P state machine. Faults and message losses in the protocol are
modeled as non-deterministic choices.

Protocol Temporal Property Description

BMCA F G (logicConv)
Eventually the BMC algorithm stabilizes with a unique spanning tree having
the grandmaster at its root. The system is said to be in logicConv state when
the system has converged to the expected spanning tree.

TSCH
∧

i∈n G(¬desynchedi)
A node in TSCH is said to be desynched - if it fails to synchronize with its
master within the threshold period. The desired property of a correct system is
that the nodes are always synchronized.

Table 1. Temporal properties verified for the case studies

All experiments were performed on 64-bit Windows server with Intel Xeon ES-
2440, 2.40GHz (12 cores/24 threads) and 160 GB of memory. ZING can exploit paral-
lelism as its iterative depth-first search algorithm is completely parallelized. All timing
results reported in this section are when ZING is run with 24 threads. We use the number
of states explored and the time taken to explore them as the comparison metric.

6.2 Verification and Testing using Approximate Synchrony

We applied approximate synchrony in three different contexts : (1) Time synchronized
Channel Hopping protocol (time synchronized system) (2) Best Master Clock Algorithm
in IEEE 1588 (exploiting recurrent logical condition) (3) Approximate Synchrony as a
bounding technique for finding bugs.
Verification of the TSCH Protocol. Time Synchronized Channel Hopping (TSCH) is
a Medium Access Control scheme that enables low power operations in wireless sen-
sor network using time-synchronization. It makes an assumptions that the clocks are
always time-synchronized within a bound, referred to as the ‘guard’ time in the stan-
dard. The low power operation of the system depends on the sensor nodes being able
to maintain synchronization (desynchronization property in Table 1). A central server



broadcasts the global schedule that instructs each sensor node when to perform op-
erations. Whether the system satisfies the desynchronization property depends on this
global schedule, and the standard provides no recommendation on these schedules.

We modeled the TSCH as a SAS system and used Theorem 1 to calculate the value
of ∆ 5. We verified the desynchronization property (Table 1) in the presence of failures
like message loss, interference in wireless network, etc. For the experiments we con-
sidered three schedules (1) round-robin: nodes are scheduled in a round robin fashion,
(2) shared with random back-off: all the schedule slots are shared and conflict is re-
solved using random back-off (3) Priority Scheduler: nodes are assigned fixed priority
and conflict is resolved based on the priority.

We were able to verify if the property was satisfied for a given topology under
the global schedule, and generated a counterexample otherwise (Table 2) which helped
the TSCH system developers in choosing the right schedules for low power operation.
Using sound approximate synchrony abstraction (with ∆ = 1), we could accurately
capture the “almost synchronous” behavior of the the TSCH system.

Verification of BMC Algorithm

Network Safety Property Convergence Property

Topology Fully Asynchronous Model with Approximate Model with Approximate

(#Nodes) Model Synchrony Synchrony
States Time Property ∆ States Time Property ∆ States Time Property

Explored (h:mm) Proved Explored (h:mm) Proved Explored (hh:mm) Proved
Linear(5) 1.2 E+9 7:12 Yes 1 9.5 E+5 0:35 Yes 1 5.3 E+8 6:33 Yes
Star(5) 2.4 E+10 9:40 Yes 1 5.8 E+5 0:54 Yes 1 4.1 E+7 5:10 Yes

Random(5) 9.19 E+9 9:01 Yes 2 5.5 E+6 1:44 Yes 2 1.8 E+9 9:10 Yes
Ring(5) 7.1 E+12* * No 1 4.8 E+7 3:44 Yes 1 8 E+9 8:04 Yes

Linear(7) 1.4 E+13* * No 1 4.6 E+7 3:05 Yes 1 1.0 E+8 6:21 Yes
Star(7) 1.1 E+13* * No 2 3.7 E+8 5:06 Yes 2 3.3 E+10 13:34 Yes
Ring(7) 3.3 E+12* * No 2 6.8 E+8 8:04 Yes 2 2.1 E+10 11:11 Yes

Random(6) 1.1 E+13* * No 3 5.7 E+9 6:00 Yes 3 1.3 E+10 10:34 Yes
Random(7) 1.1 E+13* * No 3 8.1 E+8 7:11 Yes 3 9.9 E+10 10:11 Yes

Verification of TSCH Protocol
Network Round-Robin Scheduler Shared with CSMA Priority Scheduler
Topology States Time Property States Time Property States Time Property
(#Nodes) Explored (h:mm) Satisfied Explored (h:mm) Satisfied Explored (h:mm) Satisfied
Linear(5) 4.4 E+4 0:20 Yes 1.2 E+2# 0:03 No 2.4E +3# 0:09 No

Random(5) 3.6 E+2# 0:05 No 6.2 E+3# 0:12 No 1.9E +6 0:35 Yes
Mesh(5) 1.7 E+7 4:05 Yes 9.1 E+6 2:01 Yes 9.3 E+5 0:31 Yes

* denotes end of exploration as model checker ran out of memory, # denotes property violated and counter example is reported

Table 2. Verification results using Approximate Synchrony.

Verification of BMC Algorithm. The BMC algorithm is a core component of the IEEE
1588 precision time protocol. It is a distributed fault tolerant protocol where nodes in
the system perform operations periodically to converge on a unique hierarchical tree
structure, referred to as the logical convergence state in Sec. 4. Note that the conver-
gence property for BMCA holds only in the presence of almost synchrony — it does not
guarantee convergence in the presence of unbounded process delay or message delay.
Hence, it is essential to verify BMC using the right form of synchrony.

We generated various verification instances by changing the configuration param-
eters such as number of nodes, clock characteristics, and the network topology. The
results in Table 2 for the BMC algorithm are for 5 and 7 nodes in the network with lin-
ear, star, ring, and random topologies. The∆ value used for verification of each of these

5 For system of nodes under consideration, the maximum clock skew, ε = 120µs and nominal
step size of 100ms, the value of ∆ = 1



configurations was derived by using the iterative approach described in Sec. 4.2. The re-
sults demonstrate that the value of ∆ required to construct the sound abstraction varies
depending on network topology, and clock dynamics. Table 2 shows the total number
of states explored and time taken by the model checker for proving the safety and con-
vergence property (Table 1) using the sound∆-abstract model. Approximate synchrony
abstraction is orders of magnitude faster as it explores the reduced state-space. BMCA
algorithm satisfies safety invariant even in the presence of complete asynchrony. For
demonstrating the efficiency of using approximate synchrony we also conducted the
experiments with complete asynchronous composition, exploring all possible interleav-
ing (for safety properties). The complete asynchronous model is simple to implement
but fails to prove the properties for most of the topologies.

An upshot of our approach is that we are the first to prove that the BMC algorithm
in IEEE 1588 achieves logical convergence to a unique stable state for some interesting
configurations. This was possible because of the sound and tunable approximate syn-
chrony abstraction. Although experiments with 5/7 nodes may seem small, networks of
this size do occur in practice, e.g., in industrial automation where one has small teams
of networked robots on a factory floor.
Endlessly circulating (rogue) frames in IEEE 1588: The possibility of an endlessly
circulating frame in a 1588 network has been debated for a while in the standards com-
mittee. Using formal model of BMC algorithm under approximate synchrony, we were
able to reproduce a scenario were rogue frame could occur. Existence of a rogue frame
can lead to network congestion or cause the BMC algorithm to never converge. The
counter example was cross-validated using simulation and is described in detail in [6].
It was well received by the IEEE 1588 standards committee.

Buggy Iterative Depth Bounding Non-Iterative AS Iterative AS
with Random Search

Models Depth States Time ∆ States Time ∆ States Time
Explored (h:mm) Explored (h:mm) Explored (h:mm)

BMCA Bug 1 51 1.4 E+3 0:05 2 1.1 E+3 0:04 0 2.1 E+2 0:02
BMCA Bug 2 64 5.9 E+5 0:15 2 6.1 E+4 0:14 0 1.6 E+3 0:04
BMCA Bug 3 101 9.4 E+7 0:45 3 3.3 E+5 0:17 1 9.1 E+2 0:05

ROGUE FRAME Bug 1 44 3.9 E+5 0:18 2 9.7 E+6 0:29 1 5.6 E+4 0:12
ROGUE FRAME Bug 2 87 4.4 E+4 0:09 2 2.1 E+3 0:05 1 1.1 E+3 0:03

SPT Bug 1 121 8.4 E+8 1:05 3 8.1 E+4 0:11 0 5.5 E+2 0:04

Table 3. Iterative Approximate Synchrony with bound ∆ for finding bugs faster.
Approximate Synchrony as a Search Prioritization Technique. Another interesting
application of approximate synchrony is as a bounding technique to prioritize search.
We collected buggy models during the process of modeling the BMC algorithm and
used them as benchmarks, along with buggy instance of the Perlman’s Spanning Tree
Protocol [23] (SPT). We used AS as an iterative bounding technique, starting with ∆ =
0 and incrementing ∆ after each iteration. For ∆ = 0, the model checker explores
only synchronous system behaviors. Increasing the value could be considered as adding
bounded asynchronous behaviors incrementally. Table 3 shows comparison between
iterative AS, non-iterative AS with fixed value of ∆ taken from Table 2 and iterative
depth bounding with random search. Number of states explored and the corresponding
time taken for finding the bug is used as the comparison metric. Results demonstrate
that most of the bugs are found at small values of ∆ (hence iterative search is beneficial
for finding bugs). Some bugs like the rogue frame error, that occur only when there
is asynchrony were found with minimal asynchrony in the system (∆ = 1). These
results confirm that prioritizing search based on approximate synchrony is beneficial
in finding bugs. Other bounding techniques such as delay bounding [14] and context



bounding [22] can be combined with approximate synchrony but this is left for future
work.

7 Related Work

The concept of partial synchrony has been well-studied in the theory of distributed
systems [13,12,24]. There are many ways to model partial synchrony depending on the
type of system and the end goal (e.g., formal verification). Approximate synchrony is
one such approach, which we contrast against the most closely-related work below.
Hybrid/Timed Modeling: The choice of modeling formalism greatly influences the ver-
ification approach. A time-synchronized system can be modeled as a hybrid system [2].
However, it is important to note that, unlike traditional hybrid systems examples from
the domain of control, the discrete part of the state space for these protocols is very
large. Due to this we observed that leading hybrid systems verification tools, such as
SpaceEx [16], cannot explore the entire state space.

There has been work on modeling timed protocols using real-time formalisms such
as timed automata [3], where the derivatives of all continuous-time variables are equal
to one. While tools based on the theory of timed automata do not explicitly support
modeling and verification of multi-rate timed systems [20], there do exist techniques for
approximating multirate clocks. For instance, Huang et al. [18] propose the use of inte-
ger clocks on top of UPPAAL models. Daws and Yovine [9] show how multirate timed
systems can be over-approximated into timed automata. Vaandrager and Groot [28]
models a clock that can proceed with different rate by defining a clock model consist-
ing of one location and one self transition. Such models only approximately represent
multirate time systems. By contrast, our approach algorithmically constructs abstrac-
tions that can be refined to be more precise by tuning the value of ∆, and results in an
sound untimed model that can be directly checked by a finite-state model checker.
Synchrony and Asynchrony: There have been numerous efforts devoted towards mix-
ing synchronous and asynchronous modeling. Multiclock Esterel [25] and communicat-
ing reactive processes (CRP) [5] extend the synchronous language Esterel to support a
mix of synchronous and asynchronous processes. Bounded asynchrony is another such
modeling technique with applications to biological systems [15]. It can be used to model
systems in which processes can have different but constant rates, and can be interleaved
asynchronously (with possible stuttering) before they all synchronize at the end of a
global “period.” Approximate synchrony has no such synchronizing global period. The
quasi-synchronous (QS) [7,17] approach is designed for communicating processes that
are periodic and have almost the same period. QS [17] is defined as “Between any two
successive activations of one period process, the process on any other process is acti-
vated either 0, 1, or at most 2 times”. As a consequence, in both quasi-synchrony and
bounded asynchrony, the difference of the absolute number of activations of two differ-
ent processes can grow unboundedly. In contrast, the definition of AS does not allow
this difference to grow unbounded.

8 Conclusion

This paper has introduced two new concepts: a class of distributed systems termed as
symmetric, almost-synchronous (SAS) systems, and approximate synchrony, an abstrac-
tion method for such systems. We evaluated applicability of approximate synchrony for



verification in two different contexts: (i) application-layer protocols running on top of
time-synchronized systems (TSCH), and (ii) systems that do not rely on time synchro-
nization but exhibit recurrent logical behavior (BMC algorithm). We also described an
interesting search prioritization technique based on approximate synchrony with the
key insight that, prioritizing synchronous behaviors can help in finding bugs faster.

In this paper, we focus on verifying protocols that fit the SAS formalism defined in
Sec. 2.2. While other protocols whose behavior and correctness relies on using values of
timestamps do not natively fit into the SAS formalism, they can be abstracted using the
suitable methods (e.g., using a state variable to model a local timer for a process whose
value is incremented on each step of that process — with approximate synchrony the
timer values across different processes will not differ by more than ∆). Evaluating such
abstractions for protocols like Google Spanner and others that use timestamps would
be an interesting next step.
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10 Appendix

10.1 Linear Temporal Logic

Given a finite set of atomic propositions Σ, formulas in linear temporal logic (LTL) are
constructed as per the following grammar:

ψ ::= p | ¬ψ |ψ ∨ ψ |Xψ |ψUψ

where p ∈ Σ is an atomic proposition, X is the temporal operator next and U is the
temporal operator until. Other temporal operators can be derived using these two tem-
poral operators and Boolean operators, for example, “eventually ψ” as Fψ = trueUψ
and “globally ψ” as Gψ = ¬F¬ψ.



10.2 Proofs of Theorems

Proof of Theorem 1:

Proof. Consider two arbitrary processes Pi and Pj . We show that it is always the case
that |Ni −Nj | ≤ d βσl e.

Consider an arbitrary time point t according to an ideal time reference. Without loss
of generality, assume Ni(t) > Nj(t) (i.e., that Pi has made more steps than Pj) and
that Pj has performed a step at time t. We seek to bound the number of additional steps
that Pi has made over Pj .

By the “Common Timetable” assumption, Pi and Pj step at the same values of
their respective clocks. Therefore, it must be the case that χi > χj . Further, due to time
synchronization, we also have χi − χj ≤ β. Also, the step size of Pi is bounded below
by σl. Thus, the number of additional steps Pi could have taken at time t over Pj is
bounded above by

dχi − χj
σl

e ≤ d β
σl
e

Thus, |Ni −Nj | ≤ d βσl e at time t, for any t. This yield the desired value of ∆.

Proof of Theorem 2:

Proof. From the computation ofNmin we know that if, in any trace segment, no process
makes Nmin or more steps, then that trace segment satisfies AS(∆). In particular, this
applies to every trace of the concrete modelMC .

SinceMA satisfies Property 2, every segment of a trace ofMA starting in a state
satisfying I ∨ logicConv must reach another state in logicConv before any process
makes Nmin steps. In other words, every trace ofMA has the form

s0, s1, s2, . . . , si1 , . . . , si2 , . . . , si3 , . . .

where s0 ∈ I and sij ∈ logicConv for all j, and furthermore, during the trace segments
between states s0, si1 , si2 etc., no process makes Nmin or more steps.

We now argue that this type of recurrent behavior is also present in traces ofMC .
Let us hypothesize that, to the contrary, there is a trace ofMC with a prefix of the form
(s0,χ0, t0), (s1,χ1, t1), (s2,χ2, t2), . . . , (sk,χk, tk) where s0 ∈ I, si 6∈ logicConv
for any i, and some process makes its Nminth step with the transition into sk. Note that
the untimed prefix s0, s1, s2, . . . , sk−1 is a valid prefix of some trace ofMA, since no
process has madeNmin or more steps, and hence AS(∆) holds. However, we know that
MA satisfies Property 2, which implies that some state si, i = 0, 1, . . . , k − 1 must be
in logicConv. This contradicts our hypothesis, and implies that all traces ofMC must
visit a state in logicConv infinitely often with no process making Nmin or more steps
between visits. By construction of M̂A, the untiming of each of these traces is a trace
of M̂A, from which the theorem follows.

10.3 Implementation of AS as scheduler

Section 5 gave an overview of how we implemented AS as an external scheduler in
ZING. The processes to be executed in the current state under AS(∆) is controlled
externally and we do not add any more states to the existing state space of the model.



We used explicit state model checker with state caching such that if a state is already
explored then it is not re-explored when visited again. Consider two cases, in the first
case scheduler state is a part of the system state (scheduler is modeled as a separate
process and composed with other processes in the system). Hence, state caching based
search is sound and will not miss any states. In our case since the scheduler state is
not part of the system state, we can miss soundness because we might visit the same
program state with different scheduler state (which can mean that different out-going
transitions may be enabled which were not enabled the last time) and hence the state
should be re-explored with the new scheduler state. But because of state-caching only
the program state, the explorer assumes that all possible transition from this state are
explored and hence we don’t re-explore it and can miss reachable state.

The fix for this is that we maintain minimal information as a part of the system state
that distinguishes the program state when it is visited with different scheduler state. The
complex logic of evaluating which process to execute next and enforcing AS condition
is still in the external scheduler. We did not add new scheduler process in the system
that counts the number of steps executed by each process which does save a lot of states.

10.4 Additional Information about Case Studies

In this section, we provide an overview of two motivating case studies. The first case
study concerns verification of the best master clock algorithm in the IEEE 1588 pre-
cision timed protocol [19], where clocks are not (initially) synchronized, but the drift
of clocks are bounded. This protocol is representative of a class we term a posteriori
time-synchronized, since it forms the first phase of a time synchronization protocol. The
second case study concerns time-synchronized channel hopping (TSCH) that is part of
the IEEE802.15e protocol [1]. This latter case study shows an example where the cor-
rectness properties are proven for an a priori time-synchronized system.

IEEE 1588 Precision Time Protocol The IEEE 1588 standard [19], also known as the
precision timed protocol (PTP), is a distributed protocol that enables precise synchro-
nization of clocks over a communication network. The protocol consists of two parts:
the best master clock (BMC) algorithm and a time synchronization phase. The BMC
algorithm is a distributed algorithm and its purpose is twofold: (i) to elect one grand-
master clock that is the best clock in the network, and (ii) to find a unique spanning tree
in a network, where the grandmaster clock is the root of the tree. Thus, the goal of the
BMC algorithm can be characterized as convergence to a particular stable configura-
tion, comprising agreement on network topology and leader (grandmaster clock). The
time synchronization phase uses the spanning tree to synchronize the time of all clocks
in the network against the grandmaster clock. In this case study, we are focusing on the
correctness of the BMC algorithm, not the time synchronization phase.

The BMC algorithm is distributed, meaning that there is no central node that coor-
dinates the execution of the algorithm. Consider Fig. 6(a) that depicts four devices with
separate clocks C1, C2, C3, and C4, that are connected using three networks n1, n2,
n3. Fig. 6(b) depicts the final result after executing BMC. A tree is formed where C1

is the root (the grandmaster). The parent/child relationships are defined using the states
of the ports: master (M) and slave (S) indicate parent and child, respectively. Note also
that the cycle between C2, C3, and C4 is broken by disabling the link between C2 and
C4, by specifying one of the ports as passive (P).
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Fig. 6. Fig. (a) shows four clocks C1, C2, C3, and C4, connected using three networks n1, n2,
and n3. Fig. (b) depicts the resulting master-slave synchronization hierarchy after executing the
BMC algorithm. The dashed line indicates that the link is not used in the spanning tree.
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Fig. 7. The figure shows periodic state decision events e1 for clock C1 and announce messages
a2 and a3 received from clocks C2 and C3, respectively.

Each port in the network operates logically as a state machine, determining (some-
what simplified) if it is a master port, a slave port, or a passive port. During execution of
the BMC algorithm, each port executes periodically at state decision events to exchange
messages, where the (slightly varying) period is termed the announce interval. These
events are fired by timers defined by each individual local clock. Because all clocks
can start at different states and be drifting away from each other, there is no guaran-
tee that the clocks will be synchronized. The only assumption that can be made is that
the clock drift is bounded. Such a bound is specified by the IEEE 1588 standard. Con-
sider Fig. 7 that shows an example where state decision events e1 at clock C1 are fired
periodically and announce messages a2 and a3 are received from clocks C2 and C3,



respectively. Announce messages are used by the BMC algorithm to inform the clocks
in the network about clock characteristics and to communicate the current best clock; it
is the main mechanism used for forming the spanning tree and electing the grandmaster
clock.

There are several sources of non-determinism during the BMC phase. Firstly, note
for instance that in Fig. 7 the state decision events e1 occurs with a period of 2 seconds,
but are drifting slightly for every event. The rate of the drift is bounded, but the clock
skew (the difference of time between two clocks) may increase over time. Secondly, the
length of an announce interval can vary within a tolerance of ±30% (see section 9.5.8
in [19]). Note for instance how announce messages a2 and a3 appears at different times,
and how the jitter caused by sending these messages (e.g., because of internal queues
and protocol stacks) can result in variation of the number of messages received between
two consecutive events; a2 appears once between the first two events, but twice between
the second two events.

The challenge we consider in this case study is to verify the correctness of a central
aspect of the BMC algorithm: for a specific topology, we verify that the BMC algorithm
converges to one specific grandmaster clock. The non-determinism of when announce
messages are received and when periodic events occur make the model checking prob-
lem particularly challenging. In this paper, we address the problem of how to model
such non-determinism, by providing an analytic solution that abstract away the real-
time aspect of the BMC algorithm and transform the model checking problem into an
untimed model. In this case we see that events and announce messages are “almost syn-
chronous”, where non-determinism is introduced by bounded clock rates, jitter when
sending messages, and by unknown initial clock states.

Time-Synchronized Channel Hopping The time-synchronized channel hopping (TSCH) [1]
protocol is being adopted as a part of the low power Medium Access Control (MAC)
standard IEEE802.15.4e. It has a time-slotted architecture and time-slots are grouped
into scheduled-super-frame which repeats over time. A global schedule instructs each
node on what time-slot to transmit/receive data to/from which node. The TSCH pro-
tocol makes the strong assumption that the nodes in the system are time-synchronized
within a bound called the ‘guard’ time. Hence, nodes can wake up just before start of
the time-slot allotted by the schedule and remain in sleep mode otherwise. In the ab-
sence of precise time-synchronization, the time-slots across nodes would not be aligned
within the guard bound and hence nodes will fail to communicate successfully during
the allotted slot.

Nodes keep track of time-slots using timers maintained by local clocks. Over a du-
ration of time because of the drift in clocks, nodes may get desynchronized. A central
server computes a global schedule to ensure that nodes always synchronize at least once
within the threshold period after which they would be desynchronized. Nodes synchro-
nize on receiving messages from the master node, hence successful communication
with the master node periodically is essential and should be ensured by the schedule.

The TSCH standard provides no recommendation on building the schedule. It is the
responsibility of the central server to compute the right schedule given the worst-case
clock drift and the environmental assumptions. Over-synchronization by communicat-
ing more frequently than required may keep all nodes synchronized, but is not desirable
because of power constraints. The challenge is to verify the reliability property that
given a network deployment, worst-case drift, lossy channels, and a global schedule
can all nodes in the system be always synchronized. The assumption is that the nodes



are time-synchronized and the property to check is that the protocol extended with the
schedule ensures that the nodes remain synchronized.

10.5 Parameters for Experiments

BMC Algorithm Using the set of Equations for Nmin, and the values of ε = 10−3 we
get for :
• ∆ = 1 Nmin = 1001

• ∆ = 2 Nmin = 2002

TSCH In TSCH network, all the nodes are assumed to start communicating at the
start of the time-slot. To tolerate some desynchronization the receivers start listening
a small time duration before the start of time-slot and keeps listening sometime after.
This duration is called the ‘guard’ time (Tg). Typical Tg value is 1ms. Consider the
system being equipped with 60ppm crystals then two nodes can drift by 120µs. The
synchronization period is τsp and is calculated using the equation 3. Which means that
the clocks desynchronize 8s after it last communicated. For safety we consider that
the nodes should communicate every 3s. If a step in the model corresponds to 1 time-
slot and the time-slot size if 100ms then the number of steps between two periodic
resynchronization is Nperiod = 30

τsp =
Tg
drift

(3)

Schedulers. The round robin scheduler cycles over all the nodes in the network period-
ically. Shared with CSMA have only shared slots in them and uses CSMA protocol to
resolve conflict. Priority scheduler uses a predefined priority to determine which nodes
in the system should be scheduled next.


